next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Dmodules :: genToDistractionGens

genToDistractionGens -- the image in the thetaRing of a torus-fixed element in a Weyl algebra

Synopsis

Description

This function rewrites a monomial $x^u \partial^v$ as a product $x^a p(\theta) \partial^b$, where $\theta_i = x_i \partial_i$ for $i = 1,\dots, n$. This is a step in a procedure for checking that D-ideal is torus-fixed, and is used in the isTorusFixed routine. Code Pre

i1 : R = QQ[x_1..x_4]

o1 = R

o1 : PolynomialRing
i2 : W = makeWA R

o2 = W

o2 : PolynomialRing, 4 differential variables
i3 : describe W

o3 = QQ[x ..x , dx ..dx , Degrees => {8:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1, WeylAlgebra => {x  => dx , x  => dx , x  => dx , x  => dx }]
         1   4    1    4                                                  {GRevLex => {8:1}  }                                    1      1   2      2   3      3   4      4
                                                                          {Position => Up    }

Ways to use genToDistractionGens :

For the programmer

The object genToDistractionGens is a method function.