next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Dmodules :: distraction

distraction -- the image in the thetaRing of a torus-fixed ideal in a Weyl algebra

Synopsis

Description

This computes the distraction of a torus fixed D-ideal [SST, Corollary 2.3.5]. This is necessary to compute indicial ideals [SST, Theorem 2.3.9, Corollary 2.3.5]; the roots of the indicial ideals are the exponents of the starting terms of canonical series solutions of regular holonomic D-ideals. Code Pre

i1 : R1 = QQ[z]

o1 = R1

o1 : PolynomialRing
i2 : W1 = makeWA R1

o2 = W1

o2 : PolynomialRing, 1 differential variables
i3 : a=1/2

     1
o3 = -
     2

o3 : QQ
i4 : b=3

o4 = 3
i5 : c=5/3

     5
o5 = -
     3

o5 : QQ
i6 : J = ideal(z*(1-z)*dz^2+(c-(a+b+1)*z)*dz-a*b) -- the Gauss hypergeometric equation, exponents 0, 1-c

              2  2       2   9       5     3
o6 = ideal(- z dz  + z*dz  - -z*dz + -dz - -)
                             2       3     2

o6 : Ideal of W1
i7 : cssExpts(J,{1})

              2
o7 = {{0}, {- -}}
              3

o7 : List
i8 : K = inw(J,{-1,1})

                2
o8 = ideal(6z*dz  + 10dz)

o8 : Ideal of W1
i9 : distraction(K,QQ[s])

             2
o9 = ideal(6s  + 4s)

o9 : Ideal of QQ[s]

Ways to use distraction :

For the programmer

The object distraction is a method function.