This method returns all of the spanning trees of the underlying graph of the quiver Q. Trees are represented as lists of arrow indices.
i1 : Q = bipartiteQuiver(2, 3) o1 = ToricQuiver{flow => {1, 1, 1, 1, 1, 1} } IncidenceMatrix => | -1 -1 -1 0 0 0 | | 0 0 0 -1 -1 -1 | | 1 0 0 1 0 0 | | 0 1 0 0 1 0 | | 0 0 1 0 0 1 | Q0 => {0, 1, 2, 3, 4} Q1 => {{0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}} weights => {-3, -3, 2, 2, 2} o1 : ToricQuiver |
i2 : allSpanningTrees(Q) o2 = {{2, 3, 4, 5}, {1, 3, 4, 5}, {0, 3, 4, 5}, {0, 2, 4, 5}, {0, 1, 4, 5}, ------------------------------------------------------------------------ {1, 2, 3, 5}, {0, 1, 3, 5}, {0, 1, 2, 5}, {1, 2, 3, 4}, {0, 2, 3, 4}, ------------------------------------------------------------------------ {0, 1, 2, 4}, {0, 1, 2, 3}} o2 : List |
The object allSpanningTrees is a function closure.