This method returns a the subquiver of the quiver Q that is made up of the arrows in the list L. Note that this method re-orders the subquiver labels to create a standalone quiver. To retain the original quiver labels on the subquiver, see the SeeAlso.
i1 : Q = bipartiteQuiver(2, 3) o1 = ToricQuiver{flow => {1, 1, 1, 1, 1, 1} } IncidenceMatrix => | -1 -1 -1 0 0 0 | | 0 0 0 -1 -1 -1 | | 1 0 0 1 0 0 | | 0 1 0 0 1 0 | | 0 0 1 0 0 1 | Q0 => {0, 1, 2, 3, 4} Q1 => {{0, 2}, {0, 3}, {0, 4}, {1, 2}, {1, 3}, {1, 4}} weights => {-3, -3, 2, 2, 2} o1 : ToricQuiver |
i2 : Q_{0,1,3} o2 = ToricQuiver{flow => {1, 1, 1} } IncidenceMatrix => | -1 -1 0 | | 0 0 -1 | | 1 0 1 | | 0 1 0 | Q0 => {0, 1, 2, 3} Q1 => {{0, 2}, {0, 3}, {1, 2}} weights => {-2, -1, 2, 1} o2 : ToricQuiver |