The matrix representation for a permutation is calculated by studying the action of the permutation on the basis of standard polytabloids.
The permuted polytabloids are then written as a linear combination of standard polytabloids using the straightening algorithm.
i1 : p = new Partition from {2,1} o1 = Partition{2, 1} o1 : Partition |
i2 : l = {0,2,1} o2 = {0, 2, 1} o2 : List |
i3 : matrixRepresentation (l,p) o3 = | 0 1 | | 1 0 | 2 2 o3 : Matrix QQ <--- QQ |
i4 : stan = standardTableaux p o4 = {| 0 1 |, | 0 2 |} | 2 | | 1 | o4 : TableauList |
i5 : matrixRepresentation (l,stan) o5 = | 0 1 | | 1 0 | 2 2 o5 : Matrix QQ <--- QQ |
i6 : matrixRepresentation stan o6 = HashTable{{0, 1, 2} => | 1 0 | } | 0 1 | {0, 2, 1} => | 0 1 | | 1 0 | {1, 0, 2} => | 1 0 | | -1 -1 | {1, 2, 0} => | 0 1 | | -1 -1 | {2, 0, 1} => | -1 -1 | | 1 0 | {2, 1, 0} => | -1 -1 | | 0 1 | o6 : HashTable |
The object matrixRepresentation is a method function.