Generalized vandermonde matrices allow the power in the rows to be different from the numbers from 0 to n-1.
i1 : R = QQ[x_0..x_4] o1 = R o1 : PolynomialRing |
i2 : M = generalizedVandermondeMatrix({0,2,3},{1,3,5},R) o2 = | x_0 x_2 x_3 | | x_0^3 x_2^3 x_3^3 | | x_0^5 x_2^5 x_3^5 | 3 3 o2 : Matrix R <--- R |
The determinant of these matrices divided by the Vandermonde determinant of the same rank is equal to a schur polynomial .
i3 : (determinant M)//vandermondeDeterminant({0,2,3},R) 3 2 2 3 3 2 2 2 2 3 2 2 3 2 3 o3 = x x x + x x x + x x x + 2x x x + x x x + x x x + x x x 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 o3 : R |