This method helps to construct special types of sparse resultants, see for instance denseResultant.
i1 : M = (matrix{{2,3,4,5},{0,2,1,0}},matrix{{1,-1,0,2,3},{-2,0,-7,-1,0}},matrix{{-1,0,6},{-2,1,3}}) o1 = (| 2 3 4 5 |, | 1 -1 0 2 3 |, | -1 0 6 |) | 0 2 1 0 | | -2 0 -7 -1 0 | | -2 1 3 | o1 : Sequence |
i2 : genericLaurentPolynomials M 5 4 3 2 2 3 2 -1 -2 -7 o2 = (a x + a x x + a x x + a x , b x + b x x + b x x + b x + 3 1 2 1 2 1 1 2 0 1 4 1 3 1 2 2 1 2 1 2 ------------------------------------------------------------------------ -1 6 3 -1 -2 b x , c x x + c x + c x x ) 0 1 2 1 2 1 2 0 1 2 o2 : Sequence |
i3 : genericLaurentPolynomials (2,3,1) 2 2 3 2 2 3 o3 = (a x + a x x + a x + a x + a x + a , b x + b x x + b x x + b x 5 1 4 1 2 2 2 3 1 1 2 0 9 1 8 1 2 6 1 2 3 2 ------------------------------------------------------------------------ 2 2 + b x + b x x + b x + b x + b x + b , c x + c x + c ) 7 1 5 1 2 2 2 4 1 1 2 0 2 1 1 2 0 o3 : Sequence |
The object genericLaurentPolynomials is a method function with a single argument.