This computes the eliminant of an element f of an Artinian ring R and returns a polynomial in Z
i1 : R = QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : F = {y^2-x^2-1,x-y^2+4*y-2} 2 2 2 o2 = {- x + y - 1, - y + x + 4y - 2} o2 : List |
i3 : I = ideal F 2 2 2 o3 = ideal (- x + y - 1, - y + x + 4y - 2) o3 : Ideal of R |
i4 : S = R/I o4 = S o4 : QuotientRing |
i5 : eliminant(x) 4 3 2 o5 = Z - 2Z - 9Z - 6Z - 7 o5 : QQ[Z] |
i6 : eliminant(y) 4 3 2 o6 = Z - 8Z + 19Z - 16Z + 5 o6 : QQ[Z] |