This computes the characteristic polynomial of M
i1 : R = QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : F = {y^2-x^2-1,x-y^2+4*y-2} 2 2 2 o2 = {- x + y - 1, - y + x + 4y - 2} o2 : List |
i3 : I = ideal F 2 2 2 o3 = ideal (- x + y - 1, - y + x + 4y - 2) o3 : Ideal of R |
i4 : S = R/I o4 = S o4 : QuotientRing |
i5 : M = last regularRep(y) o5 = | 0 0 -3 -2 | | 0 0 -1 1 | | 0 1 4 0 | | 1 0 4 4 | 4 4 o5 : Matrix QQ <--- QQ |
i6 : charPoly(M) 4 3 2 o6 = Z - 8Z + 19Z - 16Z + 5 o6 : QQ[Z] |