Each generator of I is formed by randomly choosing s (the sparsity) entries of the matrix B and taking a random linear combinations with coefficients in the (ultimate) coefficient ring of S, the ring in which the monomials lie.
i1 : kk=ZZ/101 o1 = kk o1 : QuotientRing |
i2 : S=kk[a..e] o2 = S o2 : PolynomialRing |
i3 : L={3,3,4,6} o3 = {3, 3, 4, 6} o3 : List |
i4 : B = matrix{{a^3,b^4,d^5,a*b*c,e}} o4 = | a3 b4 d5 abc e | 1 5 o4 : Matrix S <--- S |
i5 : I=randomSparseIdeal(B,3,2) 3 4 o5 = ideal (a + 35a*b*c, b - 32a*b*c + 5e) o5 : Ideal of S |
The object randomSparseIdeal is a method function.