next | previous | forward | backward | up | top | index | toc | Macaulay2 website
QuaternaryQuartics :: Computation of a doubling for each Betti table type

Computation of a doubling for each Betti table type -- See Proposition 2.18 in [QQ]

We take point sets $\Gamma$ in the Hash table coming from bettiStrataExamples, and make a doubling of each $I_{\Gamma}$.

i1 : kk = ZZ/101;
i2 : R = kk[x_0..x_3];
i3 : HT = bettiStrataExamples R;
i4 : netList for k in keys HT list (
         IGamma = pointsIdeal((HT#k)_0);
         J = doubling(8, IGamma);
         {k, betti res IGamma, betti res J}
         )

     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
o4 = |[310] |total: 1 5 7 3  |total: 1 8 14 8 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 3 1 .  |    1: . 3  1 . .  |
     |      |    2: . 2 6 3  |    2: . 5 12 5 .  |
     |      |                |    3: . .  1 3 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[420] |total: 1 4 5 2  |total: 1 6 10 6 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 4 2 .  |    1: . 4  2 . .  |
     |      |    2: . . 3 2  |    2: . 2  6 2 .  |
     |      |                |    3: . .  2 4 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0  1  2  3 4|
     |[200] |total: 1 6 9 4  |total: 1 10 18 10 1|
     |      |    0: 1 . . .  |    0: 1  .  .  . .|
     |      |    1: . 2 . .  |    1: .  2  .  . .|
     |      |    2: . 4 9 4  |    2: .  8 18  8 .|
     |      |                |    3: .  .  .  2 .|
     |      |                |    4: .  .  .  . 1|
     +------+----------------+-------------------+
     |      |       0 1  2 3 |       0  1  2  3 4|
     |[210] |total: 1 7 10 4 |total: 1 11 20 11 1|
     |      |    0: 1 .  . . |    0: 1  .  .  . .|
     |      |    1: . 2  1 . |    1: .  2  1  . .|
     |      |    2: . 5  9 4 |    2: .  9 18  9 .|
     |      |                |    3: .  .  1  2 .|
     |      |                |    4: .  .  .  . 1|
     +------+----------------+-------------------+
     |      |       0 1  2 3 |       0  1  2  3 4|
     |[331] |total: 1 7 10 4 |total: 1 11 20 11 1|
     |      |    0: 1 .  . . |    0: 1  .  .  . .|
     |      |    1: . 3  3 1 |    1: .  3  3  1 .|
     |      |    2: . 4  7 3 |    2: .  7 14  7 .|
     |      |                |    3: .  1  3  3 .|
     |      |                |    4: .  .  .  . 1|
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[320] |total: 1 6 8 3  |total: 1 9 16 9 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 3 2 .  |    1: . 3  2 . .  |
     |      |    2: . 3 6 3  |    2: . 6 12 6 .  |
     |      |                |    3: . .  2 3 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[683] |total: 1 6 8 3  |total: 1 9 16 9 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 6 8 3  |    1: . 6  8 3 .  |
     |      |                |    2: . .  . . .  |
     |      |                |    3: . 3  8 6 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1  2 3 |       0  1  2  3 4|
     |[100] |total: 1 8 12 5 |total: 1 13 24 13 1|
     |      |    0: 1 .  . . |    0: 1  .  .  . .|
     |      |    1: . 1  . . |    1: .  1  .  . .|
     |      |    2: . 7 12 5 |    2: . 12 24 12 .|
     |      |                |    3: .  .  .  1 .|
     |      |                |    4: .  .  .  . 1|
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[562] |total: 1 6 8 3  |total: 1 9 16 9 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 5 6 2  |    1: . 5  6 2 .  |
     |      |    2: . 1 2 1  |    2: . 2  4 2 .  |
     |      |                |    3: . 2  6 5 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[551] |total: 1 5 6 2  |total: 1 7 12 7 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 5 5 1  |    1: . 5  5 1 .  |
     |      |    2: . . 1 1  |    2: . 1  2 1 .  |
     |      |                |    3: . 1  5 5 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[430] |total: 1 5 6 2  |total: 1 7 12 7 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 4 3 .  |    1: . 4  3 . .  |
     |      |    2: . 1 3 2  |    2: . 3  6 3 .  |
     |      |                |    3: . .  3 4 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[550] |total: 1 5 5 1  |total: 1 6 10 6 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 5 5 .  |    1: . 5  5 . .  |
     |      |    2: . . . 1  |    2: . 1  . 1 .  |
     |      |                |    3: . .  5 5 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0  1  2 3|       0  1  2  3 4|
     |[000] |total: 1 10 15 6|total: 1 16 30 16 1|
     |      |    0: 1  .  . .|    0: 1  .  .  . .|
     |      |    1: .  .  . .|    1: .  .  .  . .|
     |      |    2: . 10 15 6|    2: . 16 30 16 .|
     |      |                |    3: .  .  .  . .|
     |      |                |    4: .  .  .  . 1|
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[441b]|total: 1 6 8 3  |total: 1 9 16 9 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 4 4 1  |    1: . 4  4 1 .  |
     |      |    2: . 2 4 2  |    2: . 4  8 4 .  |
     |      |                |    3: . 1  4 4 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[441a]|total: 1 6 8 3  |total: 1 9 16 9 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 4 4 1  |    1: . 4  4 1 .  |
     |      |    2: . 2 4 2  |    2: . 4  8 4 .  |
     |      |                |    3: . 1  4 4 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[300c]|total: 1 4 6 3  |total: 1 7 12 7 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 3 . .  |    1: . 3  . . .  |
     |      |    2: . 1 6 3  |    2: . 4 12 4 .  |
     |      |                |    3: . .  . 3 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1  2 3 4  |
     |[300b]|total: 1 4 6 3  |total: 1 7 12 7 1  |
     |      |    0: 1 . . .  |    0: 1 .  . . .  |
     |      |    1: . 3 . .  |    1: . 3  . . .  |
     |      |    2: . 1 6 3  |    2: . 4 12 4 .  |
     |      |                |    3: . .  . 3 .  |
     |      |                |    4: . .  . . 1  |
     +------+----------------+-------------------+
     |      |       0 1 2 3  |       0 1 2 3 4   |
     |[300a]|total: 1 3 3 1  |total: 1 4 6 4 1   |
     |      |    0: 1 . . .  |    0: 1 . . . .   |
     |      |    1: . 3 . .  |    1: . 4 . . .   |
     |      |    2: . . 3 .  |    2: . . 6 . .   |
     |      |    3: . . . 1  |    3: . . . 4 .   |
     |      |                |    4: . . . . 1   |
     +------+----------------+-------------------+

See also