This method returns a sublist $N$ of $L$ containing the elements of $L$, in order, where the first instance of each isomorphism class is retained.
i1 : L = {chain 4, divisorPoset (2^3), booleanLattice 3, booleanLattice 2, product(3, i -> chain 2)}; |
i2 : removeIsomorphicPosets L o2 = {Relation Matrix: | 1 1 1 1 |, Relation Matrix: | 1 1 1 1 1 1 1 1 |, | 0 1 1 1 | | 0 1 0 1 0 1 0 1 | | 0 0 1 1 | | 0 0 1 1 0 0 1 1 | | 0 0 0 1 | | 0 0 0 1 0 0 0 1 | | 0 0 0 0 1 1 1 1 | | 0 0 0 0 0 1 0 1 | | 0 0 0 0 0 0 1 1 | | 0 0 0 0 0 0 0 1 | ------------------------------------------------------------------------ Relation Matrix: | 1 1 1 1 |} | 0 1 0 1 | | 0 0 1 1 | | 0 0 0 1 | o2 : List |
The object removeIsomorphicPosets is a method function.