The rank generating function of $P$ is the polynomial with the coefficient of $q^i$ given by the number of vertices in rank $i$ of $P$.
The rank generating function of the $n$ chain is $q^{n-1} + \cdots + q + 1$.
i1 : n = 5; |
i2 : rankGeneratingFunction chain n 4 3 2 o2 = q + q + q + q + 1 o2 : ZZ[q] |
The rank generating function of the $n$ booleanLattice is $(q+1)^n$.
i3 : factor rankGeneratingFunction booleanLattice n 5 o3 = (q + 1) o3 : Expression of class Product |
The object rankGeneratingFunction is a method function with options.