i1 : k = 3; |
i2 : n = 6; |
i3 : SchPblm = { ({2,1}, random(CC^6,CC^6)), ({2,1}, random(CC^6,CC^6)), ({2,1}, random(CC^6,CC^6)) }; |
i4 : resetStatistics() |
i5 : solveSchubertProblem(SchPblm, k,n) o5 = {| -.973546-.443329ii -.193482-.957391ii -.460977-.267623ii |, | | .153343-.291038ii .339479-1.30008ii -.577303-.171329ii | | | .326239-.770744ii .120186-1.46205ii -.0769985-.323186ii | | | -.451322-.514227ii -.144874-.987789ii -.589493-.209825ii | | | -.0525679-.692383ii .364061-.704785ii -.325325-.185011ii | | | -.942864-.594173ii -.826353-.203654ii -.236865+.691374ii | | ------------------------------------------------------------------------ -5.47422+1.18674ii -.912706-1.64344ii -.590144+.126046ii |} -2.80395-.714508ii -.793467-2.20255ii -.016225+.340982ii | -2.29873-2.34724ii -.905617-2.59114ii .0951404+.355536ii | -3.36313+2.14592ii -.703202-1.58202ii -.375349+.205204ii | -3.91243-.845457ii -.528411-.900447ii -.187047+.545512ii | -4.19554+1.93172ii -1.11528-.480829ii .19859+1.24706ii | o5 : List |
i6 : printStatistics() # moves of type {} = 2 # moves of type {0, 0, 0} = 3 # moves of type {0, 1, 0} = 2 # moves of type {0, 2, 0} = 10 # moves of type {1, 0, 0} = 1 # moves of type {1, 1, 0} = 3 # moves of type {1, 1, 1} = 3 # moves of type {1, 2, 0} = 6 # moves of type {2, 0, 0} = 3 # moves of type {2, 1, 0} = 1 # moves of type {2, 2, 0} = 12 tracking time = .0911713 |
The object printStatistics is a function closure.