i1 : R = QQ[x,y]; |
i2 : I = monomialIdeal(y^2,x^3); o2 : MonomialIdeal of R |
i3 : multiplierIdeal(I,5/6) o3 = monomialIdeal (x, y) o3 : MonomialIdeal of R |
i4 : J = monomialIdeal(x^8,y^6); -- Example 2 of [Howald 2000] o4 : MonomialIdeal of R |
i5 : multiplierIdeal(J,1) 6 5 4 2 2 3 4 5 o5 = monomialIdeal (x , x y, x y , x y , x*y , y ) o5 : MonomialIdeal of R |
i6 : R = QQ[x,y,z]; |
i7 : f = toList factor((x^2 - y^2)*(x^2 - z^2)*(y^2 - z^2)*z) / first; |
i8 : A = arrangement f; |
i9 : multiplierIdeal(A,3/7) o9 = ideal (z, y, x) o9 : Ideal of R |
Computes the multiplier ideal of the space curve $C$ parametrized by $(t^a,t^b,t^c)$ given by $n=(a,b,c)$.
i10 : R = QQ[x,y,z]; |
i11 : n = {2,3,4}; |
i12 : t = 5/2; |
i13 : I = multiplierIdeal(R,n,t) 2 2 o13 = ideal (y - x*z, x - z) o13 : Ideal of R |
i14 : x = symbol x; |
i15 : R = QQ[x_1..x_20]; |
i16 : X = genericMatrix(R,4,5); 4 5 o16 : Matrix R <--- R |
i17 : multiplierIdeal(X,2,5/7) o17 = ideal 1 o17 : Ideal of R |
The object multiplierIdeal is a method function.