This is basically an alternative version of minimalPrimes.
This function calls topMinimalPrimesIP repeatedly, collecting the primes and passing them in with IgnorePrimes. This is repeated iterations many times or until there are no primes remaining. If iterations is excluded, all minimal primes are returned.
i1 : R = QQ[x,y,z,w,v]; |
i2 : I = monomialIdeal(y^12, x*y^3, z*w^3, z*v*y^10, z*x^10, v*z^10, w*v^10, y*v*x*z*w); o2 : MonomialIdeal of R |
i3 : ScipPrintLevel = 0; |
i4 : minimalPrimesIP(I, 1) o4 = {monomialIdeal (y, z, v), monomialIdeal (y, z, w)} o4 : List |
i5 : minimalPrimesIP I o5 = {monomialIdeal (y, z, v), monomialIdeal (y, z, w), monomialIdeal (x, y, ------------------------------------------------------------------------ w, v)} o5 : List |
i6 : minimalPrimes I o6 = {monomialIdeal (y, z, w), monomialIdeal (y, z, v), monomialIdeal (x, y, ------------------------------------------------------------------------ w, v)} o6 : List |
Warning: more than likely, this with take longer than minimalPrimes to return the same output. It some situations topMinimalPrimesIP is much faster than minimalPrimes, but not all.
The object minimalPrimesIP is a method function.