next | previous | forward | backward | up | top | index | toc | Macaulay2 website
MonodromySolver :: monodromyGroup

monodromyGroup -- compute the group of permutations implicitly defined by a homotopy graph

Synopsis

Description

If the monodromy group is full symmetric and the degree is large, then the default settings have a good chance of generating the whole group. However, you will need to use a bigger graph than the default settings to fully generate imprimitive groups, as in the following example of a Euclidean distance degree calculation.

i1 : setRandomSeed 100;
i2 : declareVariable \ {t_1,t_2,u_0,u_1,u_2,u_3};
i3 : paramMatrix = gateMatrix{{u_0,u_1,u_2,u_3}};
i4 : varMatrix = gateMatrix{{t_1,t_2}};
i5 : phi = transpose gateMatrix{{t_1^3, t_1^2*t_2, t_1*t_2^2, t_2^3}};
i6 : loss = sum for i from 0 to 3 list (u_i - phi_(i,0))^2;
i7 : dLoss = diff(varMatrix, gateMatrix{{loss}});
i8 : G = gateSystem(paramMatrix,varMatrix,transpose dLoss);
i9 : monodromyGroup(G,"msOptions" => {NumberOfEdges=>10})

o9 = {{13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20,
     ------------------------------------------------------------------------
     18}, {16, 1, 3, 19, 9, 2, 4, 8, 15, 6, 10, 12, 17, 0, 14, 20, 13, 18,
     ------------------------------------------------------------------------
     11, 5, 7}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16,
     ------------------------------------------------------------------------
     19, 15, 17, 3}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20,
     ------------------------------------------------------------------------
     14, 18, 11, 5, 7}, {3, 6, 1, 19, 16, 2, 0, 8, 10, 13, 9, 12, 14, 15, 4,
     ------------------------------------------------------------------------
     20, 17, 18, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
     ------------------------------------------------------------------------
     14, 15, 16, 17, 18, 19, 20}, {0, 1, 15, 20, 4, 8, 6, 12, 17, 9, 10, 2,
     ------------------------------------------------------------------------
     3, 13, 14, 18, 16, 19, 5, 7, 11}, {0, 9, 15, 20, 10, 8, 14, 12, 17, 1,
     ------------------------------------------------------------------------
     4, 2, 3, 13, 6, 18, 16, 19, 5, 7, 11}, {13, 10, 19, 2, 6, 5, 9, 7, 20,
     ------------------------------------------------------------------------
     4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15}, {0, 1, 2, 3, 4, 5, 6, 7, 8,
     ------------------------------------------------------------------------
     9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {3, 1, 2, 19, 4, 16, 6,
     ------------------------------------------------------------------------
     0, 8, 9, 10, 13, 12, 15, 14, 20, 17, 18, 11, 5, 7}, {0, 1, 2, 20, 4, 7,
     ------------------------------------------------------------------------
     6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {1, 6, 3, 19,
     ------------------------------------------------------------------------
     16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {10, 9,
     ------------------------------------------------------------------------
     15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {10,
     ------------------------------------------------------------------------
     9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11},
     ------------------------------------------------------------------------
     {13, 1, 19, 2, 6, 5, 9, 7, 20, 4, 10, 11, 18, 16, 14, 8, 0, 12, 17, 3,
     ------------------------------------------------------------------------
     15}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19,
     ------------------------------------------------------------------------
     20, 18}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9, 10, 5, 12, 13, 14, 18, 16, 19,
     ------------------------------------------------------------------------
     15, 17, 3}, {16, 6, 3, 19, 1, 2, 10, 8, 15, 14, 9, 12, 17, 0, 4, 20, 13,
     ------------------------------------------------------------------------
     18, 11, 5, 7}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17,
     ------------------------------------------------------------------------
     0, 3, 18, 19, 20}, {0, 1, 6, 20, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13, 14,
     ------------------------------------------------------------------------
     18, 16, 19, 15, 17, 3}, {0, 1, 6, 3, 7, 2, 11, 8, 9, 5, 10, 12, 4, 13,
     ------------------------------------------------------------------------
     14, 15, 16, 17, 18, 19, 20}, {6, 10, 7, 13, 2, 20, 8, 18, 11, 12, 14,
     ------------------------------------------------------------------------
     19, 5, 9, 1, 16, 4, 0, 3, 15, 17}, {13, 10, 8, 15, 6, 7, 9, 11, 12, 4,
     ------------------------------------------------------------------------
     14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {13, 10, 8, 15, 6, 7, 9, 11, 12,
     ------------------------------------------------------------------------
     4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18}, {16, 6, 3, 19, 10, 2, 14, 8,
     ------------------------------------------------------------------------
     15, 1, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5, 7}, {19, 14, 4, 16, 2, 3, 8,
     ------------------------------------------------------------------------
     15, 6, 12, 1, 17, 9, 20, 10, 0, 18, 13, 11, 5, 7}, {0, 1, 2, 3, 4, 5, 6,
     ------------------------------------------------------------------------
     7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 18}, {10, 9, 15, 20, 0,
     ------------------------------------------------------------------------
     8, 13, 12, 17, 16, 4, 2, 3, 14, 6, 18, 1, 19, 5, 7, 11}, {11, 10, 8, 13,
     ------------------------------------------------------------------------
     6, 20, 9, 18, 12, 4, 14, 19, 2, 5, 1, 16, 7, 0, 3, 15, 17}, {10, 9, 7,
     ------------------------------------------------------------------------
     0, 12, 17, 2, 3, 11, 8, 4, 15, 5, 14, 6, 13, 1, 16, 19, 20, 18}, {13,
     ------------------------------------------------------------------------
     10, 8, 15, 6, 7, 9, 11, 12, 4, 14, 5, 2, 16, 1, 17, 0, 3, 19, 20, 18},
     ------------------------------------------------------------------------
     {16, 6, 3, 19, 10, 2, 14, 8, 15, 1, 9, 12, 17, 0, 4, 20, 13, 18, 11, 5,
     ------------------------------------------------------------------------
     7}, {16, 14, 4, 19, 2, 3, 8, 15, 6, 12, 1, 17, 9, 0, 10, 20, 13, 18, 11,
     ------------------------------------------------------------------------
     5, 7}, {13, 10, 8, 15, 4, 7, 6, 11, 12, 9, 14, 5, 2, 16, 1, 17, 0, 3,
     ------------------------------------------------------------------------
     19, 20, 18}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1, 17, 0,
     ------------------------------------------------------------------------
     3, 19, 20, 18}, {10, 9, 15, 20, 0, 8, 13, 12, 17, 16, 4, 2, 3, 14, 6,
     ------------------------------------------------------------------------
     18, 1, 19, 5, 7, 11}, {10, 0, 5, 2, 6, 19, 9, 20, 7, 4, 13, 18, 11, 14,
     ------------------------------------------------------------------------
     16, 8, 1, 12, 17, 3, 15}, {11, 10, 12, 13, 6, 20, 9, 18, 2, 4, 14, 19,
     ------------------------------------------------------------------------
     8, 5, 1, 16, 7, 0, 3, 15, 17}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
     ------------------------------------------------------------------------
     12, 13, 14, 15, 16, 17, 18, 19, 20}, {0, 1, 2, 20, 4, 7, 6, 11, 8, 9,
     ------------------------------------------------------------------------
     10, 5, 12, 13, 14, 18, 16, 19, 15, 17, 3}, {1, 6, 3, 19, 16, 2, 0, 8,
     ------------------------------------------------------------------------
     15, 13, 9, 12, 17, 10, 4, 20, 14, 18, 11, 5, 7}, {15, 9, 0, 7, 10, 8,
     ------------------------------------------------------------------------
     14, 12, 13, 1, 4, 2, 16, 17, 6, 11, 3, 5, 19, 20, 18}, {15, 1, 0, 7, 4,
     ------------------------------------------------------------------------
     8, 6, 12, 13, 9, 10, 2, 16, 17, 14, 11, 3, 5, 19, 20, 18}, {3, 1, 6, 5,
     ------------------------------------------------------------------------
     16, 2, 0, 8, 9, 13, 10, 12, 4, 15, 14, 7, 17, 11, 18, 19, 20}, {6, 10,
     ------------------------------------------------------------------------
     12, 13, 11, 20, 5, 18, 2, 7, 14, 19, 8, 9, 1, 16, 4, 0, 3, 15, 17}, {13,
     ------------------------------------------------------------------------
     10, 19, 2, 6, 5, 9, 7, 20, 4, 14, 11, 18, 16, 1, 8, 0, 12, 17, 3, 15},
     ------------------------------------------------------------------------
     {7, 1, 9, 0, 12, 17, 2, 3, 4, 8, 10, 15, 6, 11, 14, 13, 5, 16, 19, 20,
     ------------------------------------------------------------------------
     18}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
     ------------------------------------------------------------------------
     19, 20}, {3, 1, 6, 19, 0, 2, 13, 8, 9, 16, 10, 12, 4, 15, 14, 20, 17,
     ------------------------------------------------------------------------
     18, 11, 5, 7}, {1, 6, 3, 19, 16, 2, 0, 8, 15, 13, 9, 12, 17, 10, 4, 20,
     ------------------------------------------------------------------------
     14, 18, 11, 5, 7}, {13, 10, 5, 15, 4, 12, 6, 2, 7, 9, 14, 8, 11, 16, 1,
     ------------------------------------------------------------------------
     17, 0, 3, 19, 20, 18}, {0, 1, 6, 20, 7, 15, 11, 17, 9, 5, 10, 3, 4, 13,
     ------------------------------------------------------------------------
     14, 18, 16, 19, 2, 8, 12}, {7, 10, 8, 13, 6, 20, 9, 18, 12, 4, 14, 19,
     ------------------------------------------------------------------------
     2, 11, 1, 16, 5, 0, 3, 15, 17}, {6, 10, 12, 13, 11, 20, 5, 18, 2, 7, 14,
     ------------------------------------------------------------------------
     19, 8, 9, 1, 16, 4, 0, 3, 15, 17}}

o9 : List

Caveat

This is still somewhat experimental.

Ways to use monodromyGroup :

For the programmer

The object monodromyGroup is a method function with options.