Recall that ** refers to the tensor product of modules.
i1 : R = QQ[x_1 .. x_24]; |
i2 : f = genericMatrix(R,2,4*3) o2 = | x_1 x_3 x_5 x_7 x_9 x_11 x_13 x_15 x_17 x_19 x_21 x_23 | | x_2 x_4 x_6 x_8 x_10 x_12 x_14 x_16 x_18 x_20 x_22 x_24 | 2 12 o2 : Matrix R <--- R |
i3 : isHomogeneous f o3 = true |
i4 : g = adjoint(f,R^4,R^3) o4 = | x_1 x_7 x_13 x_19 | | x_2 x_8 x_14 x_20 | | x_3 x_9 x_15 x_21 | | x_4 x_10 x_16 x_22 | | x_5 x_11 x_17 x_23 | | x_6 x_12 x_18 x_24 | 6 4 o4 : Matrix R <--- R |
If f is homogeneous, and source f === F ** G (including the grading), then the resulting matrix will be homogeneous.
i5 : g = adjoint(f,R^4,R^{-1,-1,-1}) o5 = {-1} | x_1 x_7 x_13 x_19 | {-1} | x_2 x_8 x_14 x_20 | {-1} | x_3 x_9 x_15 x_21 | {-1} | x_4 x_10 x_16 x_22 | {-1} | x_5 x_11 x_17 x_23 | {-1} | x_6 x_12 x_18 x_24 | 6 4 o5 : Matrix R <--- R |
i6 : isHomogeneous g o6 = true |