FastMinors : Index
-
chooseGoodMinors -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(...,DetStrategy=>...) -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
chooseGoodMinors(...,PeriodicCheckFunction=>...) -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(...,PointOptions=>...) -- options to pass to functions in the package RandomPoints
-
chooseGoodMinors(...,Strategy=>...) -- strategies for choosing submatrices
-
chooseGoodMinors(...,Verbose=>...) -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(ZZ,ZZ,Matrix) -- returns an ideal generated by interesting minors in a matrix
-
chooseGoodMinors(ZZ,ZZ,Matrix,Ideal) -- returns an ideal generated by interesting minors in a matrix
-
chooseRandomSubmatrix -- returns coordinates for a random submatrix
-
chooseRandomSubmatrix(ZZ,Matrix) -- returns coordinates for a random submatrix
-
chooseSubmatrixLargestDegree -- returns coordinates for higher degree submatrix of a matrix
-
chooseSubmatrixLargestDegree(ZZ,Matrix) -- returns coordinates for higher degree submatrix of a matrix
-
chooseSubmatrixSmallestDegree -- returns coordinates for low degree submatrix of a matrix
-
chooseSubmatrixSmallestDegree(ZZ,Matrix) -- returns coordinates for low degree submatrix of a matrix
-
CodimCheckFunction -- attempts to show that the ring is regular in codimension n
-
DetStrategy -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
FastMinors -- faster linear algebra, especially for computation of minors
-
FastMinorsStrategyTutorial -- How to use and construct strategies for selecting submatrices in various functions
-
getSubmatrixOfRank -- tries to find a submatrix of the given rank
-
getSubmatrixOfRank(...,DetStrategy=>...) -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
getSubmatrixOfRank(...,MaxMinors=>...) -- an option to control depth of search
-
getSubmatrixOfRank(...,PointOptions=>...) -- options to pass to functions in the package RandomPoints
-
getSubmatrixOfRank(...,Strategy=>...) -- strategies for choosing submatrices
-
getSubmatrixOfRank(...,Threads=>...) -- tries to find a submatrix of the given rank
-
getSubmatrixOfRank(...,Verbose=>...) -- tries to find a submatrix of the given rank
-
getSubmatrixOfRank(ZZ,Matrix) -- tries to find a submatrix of the given rank
-
GRevLexLargest -- strategies for choosing submatrices
-
GRevLexSmallest -- strategies for choosing submatrices
-
GRevLexSmallestTerm -- strategies for choosing submatrices
-
isCodimAtLeast -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(...,PairLimit=>...) -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(...,SPairsFunction=>...) -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(...,Verbose=>...) -- returns true if we can quickly see whether the codim is at least a given number
-
isCodimAtLeast(ZZ,Ideal) -- returns true if we can quickly see whether the codim is at least a given number
-
isDimAtMost -- returns true if we can quickly see whether the dim is at most a given number
-
isDimAtMost(...,PairLimit=>...) -- returns true if we can quickly see whether the dim is at most a given number
-
isDimAtMost(...,SPairsFunction=>...) -- returns true if we can quickly see whether the dim is at most a given number
-
isDimAtMost(...,Verbose=>...) -- returns true if we can quickly see whether the dim is at most a given number
-
isDimAtMost(ZZ,Ideal) -- returns true if we can quickly see whether the dim is at most a given number
-
isRankAtLeast -- determines if the matrix has rank at least a number
-
isRankAtLeast(...,DetStrategy=>...) -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
isRankAtLeast(...,MaxMinors=>...) -- an option to control depth of search
-
isRankAtLeast(...,PointOptions=>...) -- options to pass to functions in the package RandomPoints
-
isRankAtLeast(...,Strategy=>...) -- strategies for choosing submatrices
-
isRankAtLeast(...,Threads=>...) -- determines if the matrix has rank at least a number
-
isRankAtLeast(...,Verbose=>...) -- determines if the matrix has rank at least a number
-
isRankAtLeast(ZZ,Matrix) -- determines if the matrix has rank at least a number
-
LexLargest -- strategies for choosing submatrices
-
LexSmallest -- strategies for choosing submatrices
-
LexSmallestTerm -- strategies for choosing submatrices
-
MaxMinors -- an option to control depth of search
-
MinDimension -- an option for projDim
-
MinMinorsFunction -- attempts to show that the ring is regular in codimension n
-
MinorsCache -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
Modulus -- an option for regularInCodimension
-
PeriodicCheckFunction -- returns an ideal generated by interesting minors in a matrix
-
PointOptions -- options to pass to functions in the package RandomPoints
-
Points -- strategies for choosing submatrices
-
projDim -- finds an upper bound for the projective dimension of a module
-
projDim(...,DetStrategy=>...) -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
projDim(...,MaxMinors=>...) -- an option to control depth of search
-
projDim(...,MinDimension=>...) -- finds an upper bound for the projective dimension of a module
-
projDim(...,PointOptions=>...) -- options to pass to functions in the package RandomPoints
-
projDim(...,Strategy=>...) -- strategies for choosing submatrices
-
projDim(...,Verbose=>...) -- finds an upper bound for the projective dimension of a module
-
projDim(Module) -- finds an upper bound for the projective dimension of a module
-
Random -- strategies for choosing submatrices
-
RandomNonzero -- strategies for choosing submatrices
-
Rank -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
Recursive -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
recursiveMinors -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(...,MinorsCache=>...) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(...,Threads=>...) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(...,Verbose=>...) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
recursiveMinors(ZZ,Matrix) -- uses a recursive cofactor algorithm to compute the ideal of minors of a matrix
-
regularInCodimension -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,CodimCheckFunction=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,DetStrategy=>...) -- DetStrategy is a strategy for allowing the user to choose how determinants (or rank), is computed
-
regularInCodimension(...,MaxMinors=>...) -- an option to control depth of search
-
regularInCodimension(...,MinMinorsFunction=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,Modulus=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,PairLimit=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,PointOptions=>...) -- options to pass to functions in the package RandomPoints
-
regularInCodimension(...,SPairsFunction=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,Strategy=>...) -- strategies for choosing submatrices
-
regularInCodimension(...,UseOnlyFastCodim=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(...,Verbose=>...) -- attempts to show that the ring is regular in codimension n
-
regularInCodimension(ZZ,Ring) -- attempts to show that the ring is regular in codimension n
-
RegularInCodimensionTutorial -- A tutorial for how to use the advanced options of the regularInCodimension function
-
reorderPolynomialRing -- produces an isomorphic polynomial ring with a different, randomized, monomial order
-
reorderPolynomialRing(Symbol,Ring) -- produces an isomorphic polynomial ring with a different, randomized, monomial order
-
SPairsFunction -- returns true if we can quickly see whether the codim is at least a given number
-
StrategyCurrent -- strategies for choosing submatrices
-
StrategyDefault -- strategies for choosing submatrices
-
StrategyDefaultNonRandom -- strategies for choosing submatrices
-
StrategyDefaultWithPoints -- strategies for choosing submatrices
-
StrategyGRevLexSmallest -- strategies for choosing submatrices
-
StrategyLexSmallest -- strategies for choosing submatrices
-
StrategyPoints -- strategies for choosing submatrices
-
StrategyRandom -- strategies for choosing submatrices
-
Threads -- an option for various functions
-
UseOnlyFastCodim -- attempts to show that the ring is regular in codimension n