i1 : QQ[t_0..t_3] o1 = QQ[t ..t ] 0 3 o1 : PolynomialRing |
i2 : Phi = rationalMap {t_1^2+t_2^2+t_3^2,t_0*t_1,t_0*t_2,t_0*t_3} o2 = -- rational map -- source: Proj(QQ[t , t , t , t ]) 0 1 2 3 target: Proj(QQ[t , t , t , t ]) 0 1 2 3 defining forms: { 2 2 2 t + t + t , 1 2 3 t t , 0 1 t t , 0 2 t t 0 3 } o2 : RationalMap (quadratic rational map from PP^3 to PP^3) |
i3 : map Phi 2 2 2 o3 = map (QQ[t ..t ], QQ[t ..t ], {t + t + t , t t , t t , t t }) 0 3 0 3 1 2 3 0 1 0 2 0 3 o3 : RingMap QQ[t ..t ] <--- QQ[t ..t ] 0 3 0 3 |
The command map Phi is equivalent to map(0,Phi). More generally, the command map(i,Phi) returns the i-th representative of the map Phi.