i1 : (ZZ/190181)[x_0..x_4]; phi = rationalMap(minors(2,matrix{{x_0..x_3},{x_1..x_4}}),Dominant=>true) o2 = -- rational map -- ZZ source: Proj(------[x , x , x , x , x ]) 190181 0 1 2 3 4 ZZ target: subvariety of Proj(------[y , y , y , y , y , y ]) defined by 190181 0 1 2 3 4 5 { y y - y y + y y 2 3 1 4 0 5 } defining forms: { 2 - x + x x , 1 0 2 - x x + x x , 1 2 0 3 2 - x + x x , 2 1 3 - x x + x x , 1 3 0 4 - x x + x x , 2 3 1 4 2 - x + x x 3 2 4 } o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) |
i3 : time (p1,p2) = graph phi; -- used 0.0480559 seconds |
i4 : p1 o4 = -- rational map -- ZZ ZZ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by 190181 0 1 2 3 4 190181 0 1 2 3 4 5 { y y - y y + y y , 2 3 1 4 0 5 x y - x y + x y , 4 2 3 4 2 5 x y - x y + x y , 3 2 2 4 1 5 x y - x y + x y , 4 1 3 3 1 5 x y - x y + x y , 3 1 2 3 0 5 x y - x y - x y + x y , 2 1 1 2 1 3 0 4 x y - x y + x y , 4 0 2 3 1 4 x y - x y + x y , 3 0 1 3 0 4 x y - x y + x y 2 0 1 1 0 2 } ZZ target: Proj(------[x , x , x , x , x ]) 190181 0 1 2 3 4 defining forms: { x , 0 x , 1 x , 2 x , 3 x 4 } o4 : MultihomogeneousRationalMap (birational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^4) |
i5 : p2 o5 = -- rational map -- ZZ ZZ source: subvariety of Proj(------[x , x , x , x , x ]) x Proj(------[y , y , y , y , y , y ]) defined by 190181 0 1 2 3 4 190181 0 1 2 3 4 5 { y y - y y + y y , 2 3 1 4 0 5 x y - x y + x y , 4 2 3 4 2 5 x y - x y + x y , 3 2 2 4 1 5 x y - x y + x y , 4 1 3 3 1 5 x y - x y + x y , 3 1 2 3 0 5 x y - x y - x y + x y , 2 1 1 2 1 3 0 4 x y - x y + x y , 4 0 2 3 1 4 x y - x y + x y , 3 0 1 3 0 4 x y - x y + x y 2 0 1 1 0 2 } ZZ target: subvariety of Proj(------[y , y , y , y , y , y ]) defined by 190181 0 1 2 3 4 5 { y y - y y + y y 2 3 1 4 0 5 } defining forms: { y , 0 y , 1 y , 2 y , 3 y , 4 y 5 } o5 : MultihomogeneousRationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 to hypersurface in PP^5) |
i6 : assert(p1 * phi == p2 and p2 * phi^-1 == p1) |
i7 : describe p2 o7 = rational map defined by multiforms of degree {0, 1} source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of degrees ({0, 2},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1}) target variety: smooth quadric hypersurface in PP^5 dominance: true coefficient ring: ZZ/190181 |
i8 : projectiveDegrees p2 o8 = {51, 28, 14, 6, 2} o8 : List |
When the source of the rational map is a multi-projective variety, the method returns all the projections.
i9 : time g = graph p2; -- used 0.135747 seconds |
i10 : g_0; o10 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^4) |
i11 : g_1; o11 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to PP^5) |
i12 : g_2; o12 : MultihomogeneousRationalMap (dominant rational map from 4-dimensional subvariety of PP^4 x PP^5 x PP^5 to hypersurface in PP^5) |
i13 : describe g_0 o13 = rational map defined by multiforms of degree {1, 0, 0} source variety: 4-dimensional subvariety of PP^4 x PP^5 x PP^5 cut out by 34 hypersurfaces of degrees ({0, 1, 1},{0, 0, 2},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{0, 2, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0}) target variety: PP^4 coefficient ring: ZZ/190181 |
The object graph is a method function with options.