next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Complexes :: map(Complex,Complex,ComplexMap)

map(Complex,Complex,ComplexMap) -- make a new map of chain complexes from an existing one

Synopsis

Description

A map of complexes $f : C' \rightarrow D'$ is a sequence of maps $f_i : C'_i \rightarrow D'_{d'+i}$. The new map $g : C \rightarrow D$ is the sequence of maps $g_i : C_i \rightarrow D_{d+i}$ induced by the matrix of $f_i$.

One use for this function is to get the new map of chain complexes obtained by shifting the source or target of an existing chain map. For example, one can regard the differential on a complex can be regarded as a map of degree zero between shifted complexes.

i1 : R = ZZ/101[a,b,c];
i2 : C = freeResolution coker vars R

      1      3      3      1
o2 = R  <-- R  <-- R  <-- R
                           
     0      1      2      3

o2 : Complex
i3 : f = map(C[-1], C, dd^C, Degree => 0)

          1                 3
o3 = 1 : R  <------------- R  : 1
               | a b c |

          3                        3
     2 : R  <-------------------- R  : 2
               {1} | -b -c 0  |
               {1} | a  0  -c |
               {1} | 0  a  b  |

          3                  1
     3 : R  <-------------- R  : 3
               {2} | c  |
               {2} | -b |
               {2} | a  |

o3 : ComplexMap
i4 : assert isWellDefined f
i5 : assert(degree f == 0)
i6 : assert isCommutative f
i7 : assert isComplexMorphism f
i8 : assert not isComplexMorphism dd^C

See also