next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Complexes :: concentration(ComplexMap)

concentration(ComplexMap) -- indices on which a complex map may be non-zero

Synopsis

Description

In this package, each map of complexes has a concentration (lo, hi) such that lo <= hi. When lo <= i <= hi, the map f_i might be zero.

This function is mainly used in programming, to loop over all non-zero maps. This should not be confused with the support of the source or target.

i1 : S = ZZ/101[a..c]

o1 = S

o1 : PolynomialRing
i2 : C = freeResolution coker vars S

      1      3      3      1
o2 = S  <-- S  <-- S  <-- S
                           
     0      1      2      3

o2 : Complex
i3 : concentration id_C

o3 = (0, 3)

o3 : Sequence
i4 : D = C ++ C[5]

      1      3      3      1             1      3      3      1
o4 = S  <-- S  <-- S  <-- S  <-- 0  <-- S  <-- S  <-- S  <-- S
                                                              
     -5     -4     -3     -2     -1     0      1      2      3

o4 : Complex
i5 : concentration id_D

o5 = (-5, 3)

o5 : Sequence
i6 : f = randomComplexMap(D, C)

          1              1
o6 = 0 : S  <---------- S  : 0
               | 24 |

          3                           3
     1 : S  <----------------------- S  : 1
               {1} | -36 19  -29 |
               {1} | -30 19  -8  |
               {1} | -29 -10 -22 |

          3                           3
     2 : S  <----------------------- S  : 2
               {2} | -29 -16 34  |
               {2} | -24 39  19  |
               {2} | -38 21  -47 |

          1                   1
     3 : S  <--------------- S  : 3
               {3} | -39 |

o6 : ComplexMap
i7 : concentration f

o7 = (0, 3)

o7 : Sequence

Indices that are outside of the concentration automatically return the zero object.

i8 : f_-1

o8 = 0

o8 : Matrix 0 <--- 0
i9 : (id_D)_4

o9 = 0

o9 : Matrix 0 <--- 0

Maps inside the concentration may nevertheless be zero.

i10 : (id_D)_-1

o10 = 0

o10 : Matrix 0 <--- 0

The concentration of a zero complex can be arbitrary, however, after pruning, its concentration will be (0,0).

i11 : C0 = (complex S^0)[4]

o11 = 0
       
      -4

o11 : Complex
i12 : g = id_C0

o12 = -4 : 0 <----- 0 : -4
                0

o12 : ComplexMap
i13 : concentration g

o13 = (-4, -4)

o13 : Sequence
i14 : prune g

o14 = 0

o14 : ComplexMap
i15 : concentration oo

o15 = (0, 0)

o15 : Sequence

See also