next | previous | forward | backward | up | top | index | toc | Macaulay2 website
WeylGroups :: isMinimalRepresentative(WeylGroupElement,Parabolic)

isMinimalRepresentative(WeylGroupElement,Parabolic) -- check whether an element of a Weyl group is the minimal representative of a left coset

Synopsis

Description

i1 : R=rootSystemE(6)

o1 = RootSystem{...8...}

o1 : RootSystem
i2 : P=parabolic(R,set{1,2,3,4,5})

o2 = set {1, 2, 3, 4, 5}

o2 : Parabolic
i3 : w=minimalRepresentative ((longestWeylGroupElement R) % P)

o3 = WeylGroupElement{RootSystem{...8...}, | -11 |}
                                           |  1  |
                                           |  1  |
                                           |  1  |
                                           |  1  |
                                           |  1  |

o3 : WeylGroupElement
i4 : isMinimalRepresentative(w,P)

o4 = true

Caveat

This function is less efficient than the corresponding function for right cosets.