next | previous | forward | backward | up | top | index | toc | Macaulay2 website
WeylGroups :: dynkinType(BasicList)

dynkinType(BasicList) -- constructing a Dynkin type

Synopsis

Description

i1 : dynkinType({{"A",2},{"B",3}})

o1 = DynkinType{{A, 2}, {B, 3}}

o1 : DynkinType

Note that low rank isomorphisms between classical groups are automatically used so that the letter is alphabetically minimal and the elementary types are irreducible (D2=A1xA1).

i2 : dynkinType({{"A",2},{"B",1}})

o2 = DynkinType{{A, 2}, {A, 1}}

o2 : DynkinType
i3 : dynkinType({{"A",2},{"C",2}})

o3 = DynkinType{{A, 2}, {B, 2}}

o3 : DynkinType
i4 : dynkinType({{"A",2},{"D",2}})

o4 = DynkinType{{A, 2}, {A, 1}, {A, 1}}

o4 : DynkinType