next | previous | forward | backward | up | top | index | toc | Macaulay2 website
WeylGroups :: WeylGroupRightCoset == WeylGroupRightCoset

WeylGroupRightCoset == WeylGroupRightCoset -- equality of right cosets

Synopsis

Description

i1 : R=rootSystemD(5)

o1 = RootSystem{...8...}

o1 : RootSystem
i2 : P=parabolic(R,set{2,3,4,5})

o2 = set {2, 3, 4, 5}

o2 : Parabolic
i3 : w=longestWeylGroupElement R

o3 = WeylGroupElement{RootSystem{...8...}, | -1 |}
                                           | -1 |
                                           | -1 |
                                           | -1 |
                                           | -1 |

o3 : WeylGroupElement
i4 : w1=P % w

o4 = WeylGroupRightCoset{set {2, 3, 4, 5}, WeylGroupElement{RootSystem{...8...}, | -7 |}}
                                                                                 |  1 |
                                                                                 |  1 |
                                                                                 |  1 |
                                                                                 |  1 |

o4 : WeylGroupRightCoset
i5 : w2=P % (reduce(R,{2,3})*w)

o5 = WeylGroupRightCoset{set {2, 3, 4, 5}, WeylGroupElement{RootSystem{...8...}, | -7 |}}
                                                                                 |  1 |
                                                                                 |  1 |
                                                                                 |  1 |
                                                                                 |  1 |

o5 : WeylGroupRightCoset
i6 : w1==w2

o6 = true