next | previous | forward | backward | up | top | index | toc | Macaulay2 website
WeylGroups :: DynkinType == DynkinType

DynkinType == DynkinType -- the equality of Dynkin Types

Synopsis

Description

i1 : T1=dynkinType(rootSystemB(2))

o1 = DynkinType{{B, 2}}

o1 : DynkinType
i2 : T2=dynkinType(rootSystemA(3))

o2 = DynkinType{{A, 3}}

o2 : DynkinType
i3 : (T1++T2) == (T2++T1)

o3 = true

whereas

i4 : (T1++T2) === (T2++T1)

o4 = false