twist takes a toric vector bundle $E$ in Klyachko's description and a list of integers L. The list must contain one entry for each ray of the underlying fan. Then it computes the twist of the vector bundle by the line bundle given by these integers (see weilToCartier).
i1 : E = tangentBundle hirzebruchFan 2 o1 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o1 : ToricVectorBundleKlyachko |
i2 : L = {1,-2,3,-4} o2 = {1, -2, 3, -4} o2 : List |
i3 : E1 = twist(E,L) o3 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 2 o3 : ToricVectorBundleKlyachko |
i4 : details E1 o4 = HashTable{| -1 | => (| -1 1/2 |, | -4 -3 |)} | 2 | | 2 0 | | 0 | => (| 0 1 |, | -2 -1 |) | -1 | | -1 0 | | 0 | => (| 0 1 |, | 1 2 |) | 1 | | 1 0 | | 1 | => (| 1 0 |, | 3 4 |) | 0 | | 0 1 | o4 : HashTable |
The object twist is a method function.