Two equivariant vector bundles in Klyachko's description are isomorphic if there exists a simultaneous isomorphism for the filtered vector spaces of all rays. If the two bundles are isomorphic (see areIsomorphic) this function returns the isomorphism. For this, the two bundles must be defined over the same fan.
i1 : HF = hirzebruchFan 2 o1 = HF o1 : Fan |
i2 : E = exteriorPower(2, cotangentBundle HF) o2 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 1 o2 : ToricVectorBundleKlyachko |
i3 : F = weilToCartier({-1,-1,-1,-1},HF) o3 = {dimension of the variety => 2 } number of affine charts => 4 number of rays => 4 rank of the vector bundle => 1 o3 : ToricVectorBundleKlyachko |
i4 : M = isomorphism(E,F) o4 = | 1 | 1 1 o4 : Matrix QQ <--- QQ |
The object isomorphism is a method function.