next | previous | forward | backward | up | top | index | toc | Macaulay2 website
TestIdeals :: frobeniusPower

frobeniusPower -- compute a (generalized) Frobenius power of an ideal

Synopsis

Description

If $I$ is an ideal in a ring of positive characteristic $p$, then frobeniusPower(t, I) computes the generalized Frobenius power $I^{[t]}$, as introduced by Hernandez, Teixeira, and Witt. If the exponent is a power of the characteristic, this is just the usual Frobenius power.

i1 : R = ZZ/5[x,y];
i2 : I = ideal(x, y);

o2 : Ideal of R
i3 : frobeniusPower(125, I)

             125   125
o3 = ideal (x   , y   )

o3 : Ideal of R

If $n$ is an arbitrary nonnegative integer, then write the base $p$ expansion of $n$ as follows: $n = a_0 + a_1 p + a_2 p^2 + ... + a_r p^r$. Then the $n^{th}$ Frobenius power of $I$ is defined as follows: $I^{[n]} = (I^{a_0})(I^{a_1})^{[p]}(I^{a_2})^{[p^2]}\cdots(I^{a_r})^{[p^r]}$.

i4 : R = ZZ/3[x,y];
i5 : I = ideal(x, y);

o5 : Ideal of R
i6 : adicExpansion(3, 17)

o6 = {2, 2, 1}

o6 : List
i7 : J1 = I^2*frobenius(1, I^2)*frobenius(2, I);

o7 : Ideal of R
i8 : J2 = frobeniusPower(17, I);

o8 : Ideal of R
i9 : J1 == J2

o9 = true

If $t$ is a rational number of the form $t = a/p^e$, then $I^{[t]} = (I^{[a]})^{[1/p^e]}$.

i10 : R = ZZ/5[x,y,z];
i11 : I = ideal(x^50*z^95, y^100 + z^27);

o11 : Ideal of R
i12 : frobeniusPower(4/5^2, I)

              4   4 3   8 2   12    16
o12 = ideal (z , y z , y z , y  z, y  )

o12 : Ideal of R
i13 : frobeniusRoot(2, frobeniusPower(4, I))

              4   4 3   8 2   12    16
o13 = ideal (z , y z , y z , y  z, y  )

o13 : Ideal of R

If $t$ is an arbitrary nonegative rational number, and \{$t_n$\} = \{$a_n/p^{e_n}$\}\ is a sequence of rational numbers converging to $t$ from above, then $I^{[t]}$ is the largest ideal in the increasing chain of ideals \{$I^{[t_n]}$\}.

i14 : p = 7;
i15 : R = ZZ/p[x,y];
i16 : I = ideal(x^50, y^30);

o16 : Ideal of R
i17 : t = 6/19;
i18 : expon = e -> ceiling(p^e*t)/p^e; -- a sequence converging to t from above
i19 : print \ apply(6, i -> frobeniusPower(expon i, I));
        50   30
ideal (x  , y  )
        12   7 8   14 4   21
ideal (y  , x y , x  y , x  )
        9   2 8   7 5   8 4   14    15
ideal (y , x y , x y , x y , x  y, x  )
        9     8   7 4   14
ideal (y , x*y , x y , x  )
        9     8   7 4   14
ideal (y , x*y , x y , x  )
        9     8   7 4   14
ideal (y , x*y , x y , x  )
i20 : frobeniusPower(t, I)

              9     8   7 4   14
o20 = ideal (y , x*y , x y , x  )

o20 : Ideal of R

The option FrobeniusPowerStrategy controls the strategy for computing the generalized Frobenius power $I^{[t]}$. The two valid options are Safe and Naive, and the default strategy is Naive.

The option FrobeniusRootStrategy is passed to internal frobeniusRoot calls.

See also

Ways to use frobeniusPower :

For the programmer

The object frobeniusPower is a method function with options.