The 3-dimensional sphere has a unique minimal nonface which corresponds to the interior.
i1 : R = ZZ[a..e]; |
i2 : sphere = simplicialComplex {b*c*d*e,a*c*d*e,a*b*d*e,a*b*c*e,a*b*c*d} o2 = | bcde acde abde abce abcd | o2 : SimplicialComplex |
i3 : monomialIdeal sphere o3 = monomialIdeal(a*b*c*d*e) o3 : MonomialIdeal of R |
i4 : D = simplicialComplex {e, c*d, b*d, a*b*c} o4 = | e cd bd abc | o4 : SimplicialComplex |
i5 : monomialIdeal D o5 = monomialIdeal (a*d, b*c*d, a*e, b*e, c*e, d*e) o5 : MonomialIdeal of R |
This routine is identical to ideal(SimplicialComplex), except for the type of the output.
Note that no computatation is performed by this routine; all the computation was done while constructing the simplicial complex.