next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SimplicialComplexes :: coefficientRing(SimplicialComplex)

coefficientRing(SimplicialComplex)

Synopsis

Description

i1 : R = QQ[a..d];
i2 : D = simplicialComplex monomialIdeal(a*b*c*d);
i3 : ring D

o3 = R

o3 : PolynomialRing
i4 : coefficientRing D

o4 = QQ

o4 : Ring
i5 : S = ZZ[w..z];
i6 : E = simplicialComplex monomialIdeal(w*x*y*z);
i7 : ring E

o7 = S

o7 : PolynomialRing
i8 : coefficientRing E

o8 = ZZ

o8 : Ring
Some computations depend on the choice of coefficient ring, for example, the boundary maps and the chain complex of D.
i9 : chainComplex D

       1       4       6       4
o9 = QQ  <-- QQ  <-- QQ  <-- QQ
                              
     -1      0       1       2

o9 : ChainComplex
i10 : chainComplex E

        1       4       6       4
o10 = ZZ  <-- ZZ  <-- ZZ  <-- ZZ
                               
      -1      0       1       2

o10 : ChainComplex

See also