next | previous | forward | backward | up | top | index | toc | Macaulay2 website
PencilsOfQuadrics :: symmetricM

symmetricM -- part of a CliffordModule

Synopsis

Description

the underlying pencil of quadratic forms

i1 : kk = ZZ/101

o1 = kk

o1 : QuotientRing
i2 : g = 1

o2 = 1
i3 : (S, qq,  R,  u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
i4 : M = cliffordModule(M1,M2, R)

o4 = CliffordModule{...6...}

o4 : CliffordModule
i5 : M.symmetricM

o5 = | -5t  -50s 6t     -6t  |
     | -50s 0    -9t    5t   |
     | 6t   -9t  -s-30t 3t   |
     | -6t  5t   3t     -48t |

             4       4
o5 : Matrix R  <--- R

this can also be obtained by

i6 : symMatrix(M.evenOperators,M.oddOperators)

o6 = | -5t  -50s 6t     -6t  |
     | -50s 0    -9t    5t   |
     | 6t   -9t  -s-30t 3t   |
     | -6t  5t   3t     -48t |

             4       4
o6 : Matrix R  <--- R

See also

For the programmer

The object symmetricM is a symbol.