# oddCenter -- part of a CliffordModule

## Synopsis

• Usage:
c1 = M.oddCenter
• Outputs:
• c1, ,

## Description

Gives the action of Haag's center element y of the even Clifford algebra on the odd part of M

 i1 : kk = ZZ/101 o1 = kk o1 : QuotientRing i2 : g = 1 o2 = 1 i3 : (S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g); i4 : M = cliffordModule(M1,M2, R) o4 = CliffordModule{...6...} o4 : CliffordModule i5 : M.oddCenter o5 = {-1} | -49st+24t2 -24st 15t2 28t2 -6t {-1} | -50s2+15st 49st+24t2 6st+43t2 -5st+5t2 -6t {-1} | -9st 5st -49st-24t2 0 -50s {-1} | -45t2 25t2 15t2 49st-24t2 5t {-2} | -5s2t+5st2 -28st2 -24s2t-13st2 0 49st-24t2 {-2} | -25st2+25t3 -39t3 -38st2-29t3 24s2t+13st2 -15t2 {-2} | 0 0 39t3 -28st2 25t2 {-2} | 0 0 -25st2+25t3 5s2t-5st2 45t2 ------------------------------------------------------------------------ 5t 3t -48t | 9t s+30t -3t | 0 -9t 5t | 50s -6t 6t | 0 -5st+5t2 -28t2 | -49st-24t2 -6st-43t2 15t2 | -5st 49st+24t2 24st | -9st 50s2-15st -49st+24t2 | 8 8 o5 : Matrix R <--- R