next | previous | forward | backward | up | top | index | toc | Macaulay2 website
PencilsOfQuadrics :: oddCenter

oddCenter -- part of a CliffordModule

Synopsis

Description

Gives the action of Haag's center element y of the even Clifford algebra on the odd part of M

i1 : kk = ZZ/101

o1 = kk

o1 : QuotientRing
i2 : g = 1

o2 = 1
i3 : (S, qq,  R,  u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g);
i4 : M = cliffordModule(M1,M2, R)

o4 = CliffordModule{...6...}

o4 : CliffordModule
i5 : M.oddCenter

o5 = {-1} | -49st+24t2  -24st     15t2         28t2        -6t      
     {-1} | -50s2+15st  49st+24t2 6st+43t2     -5st+5t2    -6t      
     {-1} | -9st        5st       -49st-24t2   0           -50s     
     {-1} | -45t2       25t2      15t2         49st-24t2   5t       
     {-2} | -5s2t+5st2  -28st2    -24s2t-13st2 0           49st-24t2
     {-2} | -25st2+25t3 -39t3     -38st2-29t3  24s2t+13st2 -15t2    
     {-2} | 0           0         39t3         -28st2      25t2     
     {-2} | 0           0         -25st2+25t3  5s2t-5st2   45t2     
     ------------------------------------------------------------------------
     5t         3t        -48t       |
     9t         s+30t     -3t        |
     0          -9t       5t         |
     50s        -6t       6t         |
     0          -5st+5t2  -28t2      |
     -49st-24t2 -6st-43t2 15t2       |
     -5st       49st+24t2 24st       |
     -9st       50s2-15st -49st+24t2 |

             8       8
o5 : Matrix R  <--- R

See also

For the programmer

The object oddCenter is a symbol.