# evenOperators -- part of a CliffordModule

## Synopsis

• Usage:
uEv = M.evenOperators
• Outputs:
• uEv, a list, of the even operators on M

## Description

The list of the even operators uEv_i: M_0\to M_1

 i1 : kk = ZZ/101 o1 = kk o1 : QuotientRing i2 : g = 1 o2 = 1 i3 : (S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g); i4 : M = cliffordModule(M1,M2, R) o4 = CliffordModule{...6...} o4 : CliffordModule i5 : M.evenOperators o5 = {{-1} | 0 0 0 -1 0 0 0 0 |, {-1} | 0 0 0 0 0 -1 0 0 |, {-1} {-1} | 0 0 1 0 0 0 0 0 | {-1} | 0 0 0 0 1 0 0 0 | {-1} {-1} | 0 -1 0 0 0 0 0 0 | {-1} | 0 0 0 0 0 0 0 0 | {-1} {-1} | 0 0 0 0 0 0 0 5t | {-1} | 0 -1 0 0 0 0 0 -s | {-1} {-2} | -1 0 0 0 0 0 0 0 | {-2} | 0 0 0 0 0 0 0 0 | {-2} {-2} | 0 0 0 0 0 0 5t 0 | {-2} | -1 0 0 0 0 0 -s 0 | {-2} {-2} | 0 0 0 0 0 -5t 0 0 | {-2} | 0 0 0 0 0 s 0 0 | {-2} {-2} | 0 0 0 0 5t 0 0 0 | {-2} | 0 0 0 0 -s 0 0 0 | {-2} ------------------------------------------------------------------------ | 0 0 0 0 0 0 -1 0 |, {-1} | 0 0 0 0 | 0 0 0 0 0 0 0 s+30t | {-1} | 0 0 0 0 | 0 0 0 0 1 0 0 -18t | {-1} | 0 0 0 0 | 0 0 -1 0 0 0 0 -12t | {-1} | 0 0 0 -1 | 0 0 0 0 0 s+30t -18t 0 | {-2} | 0 0 0 0 | 0 0 0 -s-30t 0 0 -12t 0 | {-2} | 0 0 48t 6t | -1 0 0 18t 0 12t 0 0 | {-2} | 0 -48t 0 -10t | 0 s+30t -18t 0 -12t 0 0 0 | {-2} | -1 -6t 10t 0 ------------------------------------------------------------------------ 0 0 0 -48t |} 0 0 -1 -6t | 0 1 0 10t | 0 0 0 12t | -48t -6t 10t 0 | 0 0 12t 0 | 0 -12t 0 0 | 12t 0 0 0 | o5 : List