next | previous | forward | backward | up | top | index | toc | Macaulay2 website
OldToricVectorBundles :: tangentBundle

tangentBundle -- the tangent bundle on a toric variety

Synopsis

Description

If the fan F is pure, of full dimension and smooth, then the function generates the tangent bundle of the toric variety given by F. If no further options are given then the resulting bundle will be in Klyachko's description:

i1 : F = pp1ProductFan 2

o1 = {ambient dimension => 2         }
      number of generating cones => 4
      number of rays => 4
      top dimension of the cones => 2

o1 : Fan
i2 : E = tangentBundle F

o2 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 2

o2 : ToricVectorBundleKlyachko
i3 : details E

o3 = HashTable{| -1 | => (| -1 0 |, | -1 0 |)}
               | 0  |     | 0  1 |
               | 0  | => (| 0  1 |, | -1 0 |)
               | -1 |     | -1 0 |
               | 0 | => (| 0 1 |, | -1 0 |)
               | 1 |     | 1 0 |
               | 1 | => (| 1 0 |, | -1 0 |)
               | 0 |     | 0 1 |

o3 : HashTable

If the option "Type" => "Kaneyama" is given then the resulting bundle will be in Kaneyama's description:

i4 : F = pp1ProductFan 2

o4 = {ambient dimension => 2         }
      number of generating cones => 4
      number of rays => 4
      top dimension of the cones => 2

o4 : Fan
i5 : E = tangentBundle(F,"Type" => "Kaneyama")

o5 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 2

o5 : ToricVectorBundleKaneyama
i6 : details E

o6 = (HashTable{0 => (| 1 0 |, | -1 0  |)}, HashTable{(0, 1) => | 1 0  |})
                      | 0 1 |  | 0  -1 |                        | 0 -1 |
                1 => (| 1 0  |, | -1 0 |)             (0, 2) => | -1 0 |
                      | 0 -1 |  | 0  1 |                        | 0  1 |
                2 => (| -1 0 |, | 1 0  |)             (1, 3) => | -1 0 |
                      | 0  1 |  | 0 -1 |                        | 0  1 |
                3 => (| -1 0  |, | 1 0 |)             (2, 3) => | 1 0  |
                      | 0  -1 |  | 0 1 |                        | 0 -1 |

o6 : Sequence

See also

Ways to use tangentBundle :

For the programmer

The object tangentBundle is a method function with options.