next | previous | forward | backward | up | top | index | toc | Macaulay2 website
OldToricVectorBundles :: maxCones(ToricVectorBundle)

maxCones(ToricVectorBundle) -- the list of maximal cones of the underlying fan

Synopsis

Description

Returns the list of maximal cones of the underlying fan. These are the cones that generate the fan, i.e., are not a face of another. See Fan, maxCones and Cone.

i1 : E = tangentBundle pp1ProductFan 2

o1 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 2

o1 : ToricVectorBundleKlyachko
i2 : L = maxCones E

o2 = {{ambient dimension => 2           }, {ambient dimension => 2         
       dimension of lineality space => 0    dimension of lineality space =>
       dimension of the cone => 2           dimension of the cone => 2     
       number of facets => 2                number of facets => 2          
       number of rays => 2                  number of rays => 2            
     ------------------------------------------------------------------------
      }, {ambient dimension => 2           }, {ambient dimension => 2      
     0    dimension of lineality space => 0    dimension of lineality space
          dimension of the cone => 2           dimension of the cone => 2
          number of facets => 2                number of facets => 2
          number of rays => 2                  number of rays => 2
     ------------------------------------------------------------------------
         }}
     => 0

o2 : List
i3 : apply(L,rays)

o3 = {| 1 0 |, | 1 0  |, | -1 0 |, | -1 0  |}
      | 0 1 |  | 0 -1 |  | 0  1 |  | 0  -1 |

o3 : List
i4 : E = tangentBundle(pp1ProductFan 2,"Type" => "Kaneyama")

o4 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 2

o4 : ToricVectorBundleKaneyama
i5 : L = maxCones E

o5 = {{ambient dimension => 2           }, {ambient dimension => 2         
       dimension of lineality space => 0    dimension of lineality space =>
       dimension of the cone => 2           dimension of the cone => 2     
       number of facets => 2                number of facets => 2          
       number of rays => 2                  number of rays => 2            
     ------------------------------------------------------------------------
      }, {ambient dimension => 2           }, {ambient dimension => 2      
     0    dimension of lineality space => 0    dimension of lineality space
          dimension of the cone => 2           dimension of the cone => 2
          number of facets => 2                number of facets => 2
          number of rays => 2                  number of rays => 2
     ------------------------------------------------------------------------
         }}
     => 0

o5 : List
i6 : apply(L,rays)

o6 = {| 1 0 |, | 1 0  |, | -1 0 |, | -1 0  |}
      | 0 1 |  | 0 -1 |  | 0  1 |  | 0  -1 |

o6 : List

See also