next | previous | forward | backward | up | top | index | toc | Macaulay2 website
OldToricVectorBundles :: isVectorBundle

isVectorBundle -- checks if the data does in fact define an equivariant toric vector bundle

Synopsis

Description

If E is in Klyachko's description then the data in E defines an equivariant toric vector on the toric variety if and only if for each maximal cone exists a decomposition into torus eigenspaces of the bundle. See Sam Payne's Moduli of toric vector bundles, Compositio Math. 144, 2008. Section 2.3. This uses the two functions findWeights and existsDecomposition.

i1 : E = toricVectorBundle(2,pp1ProductFan 2)

o1 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 2

o1 : ToricVectorBundleKlyachko
i2 : E = addBase(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})

o2 = {dimension of the variety => 2 }
      number of affine charts => 4
      number of rays => 4
      rank of the vector bundle => 2

o2 : ToricVectorBundleKlyachko
i3 : isVectorBundle E

o3 = true
i4 : F = toricVectorBundle(1,normalFan crossPolytope 3)

o4 = {dimension of the variety => 3 }
      number of affine charts => 6
      number of rays => 8
      rank of the vector bundle => 1

o4 : ToricVectorBundleKlyachko
i5 : F = addFiltration(F,apply({2,1,1,2,2,1,1,2}, i -> matrix {{i}}))

o5 = {dimension of the variety => 3 }
      number of affine charts => 6
      number of rays => 8
      rank of the vector bundle => 1

o5 : ToricVectorBundleKlyachko
i6 : isVectorBundle F

o6 = false

If E is in Kaneyama's description then data in E defines an equivariant toric vector bundle on the toric variety if and only if it satisfies the regularity and the cocycle condition (See cocycleCheck and regCheck).

i7 : E = toricVectorBundle(2,pp1ProductFan 2,"Type" => "Kaneyama")

o7 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 2

o7 : ToricVectorBundleKaneyama
i8 : isVectorBundle E

o8 = true
i9 : E = addBaseChange(E,{matrix{{1,2},{3,1}},matrix{{-1,0},{3,1}},matrix{{1,2},{-3,-1}},matrix{{-1,0},{-3,-1}}})

o9 = {dimension of the variety => 2 }
      number of affine charts => 4
      rank of the vector bundle => 2

o9 : ToricVectorBundleKaneyama
i10 : isVectorBundle E

o10 = false

See also

Ways to use isVectorBundle :

For the programmer

The object isVectorBundle is a method function.