A Schubert problem on the Grassmannian $Gr(k,n)$ is a list of Schubert subvarieties (assumed general) of $Gr(k,n)$ whose codimensions add up to $k(n-k)$, the dimension of the Grassmannian. A Schubert variety is represented by a pair $(c,F)$, where $c$ is a Schubert condition (represented as a partition or a bracket) and $F$ is a flag, represented as an invertible $n\times n$-matrix. The Schubert variety for the pair $(c,F)$ consists of all $k$-planes that satisfy the incidence condition $c$ imposed by the flag $F$.
For a Schubert problem, we may fix one flag for each Schubert condition in the list --- i.e., describe an instance of a given Schubert problem --- and look for the solutions for this instance --- i.e., points in the intersection of the corresponding Schubert varieties. The methods of this package find approximations of these points.
i1 : k = 3; n = 6; |
i3 : SchPblm = { ({2,1}, random(CC^6,CC^6)), ({2,1}, random(CC^6,CC^6)), ({2,1}, random(CC^6,CC^6)) }; |
i4 : solveSchubertProblem(SchPblm, k,n) o4 = {| -.973546-.443329ii -.193482-.957391ii -.460977-.267623ii |, | | .153343-.291038ii .339479-1.30008ii -.577303-.171329ii | | | .326239-.770744ii .120186-1.46205ii -.0769985-.323186ii | | | -.451322-.514227ii -.144874-.987789ii -.589493-.209825ii | | | -.0525679-.692383ii .364061-.704785ii -.325325-.185011ii | | | -.942864-.594173ii -.826353-.203654ii -.236865+.691374ii | | ------------------------------------------------------------------------ -5.47422+1.18674ii -.912706-1.64344ii -.590144+.126046ii |} -2.80395-.714508ii -.793467-2.20255ii -.016225+.340982ii | -2.29873-2.34724ii -.905617-2.59114ii .0951404+.355536ii | -3.36313+2.14592ii -.703202-1.58202ii -.375349+.205204ii | -3.91243-.845457ii -.528411-.900447ii -.187047+.545512ii | -4.19554+1.93172ii -1.11528-.480829ii .19859+1.24706ii | o4 : List |
This documentation describes version 1.17 of NumericalSchubertCalculus.
The source code from which this documentation is derived is in the file NumericalSchubertCalculus.m2. The auxiliary files accompanying it are in the directory NumericalSchubertCalculus/.
The object NumericalSchubertCalculus is a package.