next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Nauty :: relabelGraph

relabelGraph -- applies a vertex invariant based refinement to a graph

Synopsis

Description

This method applies one of sixteen vertex invariant based refinements to a graph. See the nauty documentation for a more complete description of each and how the argument $a$ is used.

The sixteen vertex invariants are: \break \ \ \ \ $i = 0$: none,
\ \ \ \ $i = 1$: twopaths,
\ \ \ \ $i = 2$: adjtriang(K),
\ \ \ \ $i = 3$: triples,
\ \ \ \ $i = 4$: quadruples,
\ \ \ \ $i = 5$: celltrips,
\ \ \ \ $i = 6$: cellquads,
\ \ \ \ $i = 7$: cellquins,
\ \ \ \ $i = 8$: distances(K),
\ \ \ \ $i = 9$: indsets(K),
\ \ \ \ $i = 10$: cliques(K),
\ \ \ \ $i = 11$: cellcliq(K),
\ \ \ \ $i = 12$: cellind(K),
\ \ \ \ $i = 13$: adjacencies,
\ \ \ \ $i = 14$: cellfano, and
\ \ \ \ $i = 15$: cellfano2.

i1 : R = QQ[a..e];
i2 : G = graph {a*e, e*c, c*b, b*d, d*a};
i3 : relabelGraph G

o3 = Graph{edges => {{a, b}, {a, c}, {b, d}, {c, e}, {d, e}}}
           ring => R
           vertices => {a, b, c, d, e}

o3 : Graph

Note that on most small graphs, all sixteen orderings produce the same result.

See also

Ways to use relabelGraph :

For the programmer

The object relabelGraph is a method function.