i1 : R = ZZ/33331[x_0..x_4]; |
i2 : Phi = (last graph multirationalMap rationalMap transpose jacobian(-x_2^3+2*x_1*x_2*x_3-x_0*x_3^2-x_1^2*x_4+x_0*x_2*x_4))||projectiveVariety ideal(random(2,R)); o2 : MultirationalMap (rational map from threefold in PP^4 x PP^4 to hypersurface in PP^4) |
i3 : ? Phi o3 = multi-rational map consisting of one single rational map source variety: threefold in PP^4 x PP^4 cut out by 13 hypersurfaces of target variety: hypersurface in PP^4 defined by a form of degree 2 ------------------------------------------------------------------------ multi-degrees (1,1)^3 (0,2)^1 (2,1)^8 (4,0)^1 |
i4 : time degree(Phi,Strategy=>"random point") -- used 2.081 seconds o4 = 2 |
i5 : time degree(Phi,Strategy=>"0-th projective degree") -- used 0.490253 seconds o5 = 2 |
i6 : time degree Phi -- used 0.388779 seconds o6 = 2 |
Note, as in the example above, that calculation times may vary depending on the strategy used.