next | previous | forward | backward | up | top | index | toc | Macaulay2 website
MultiprojectiveVarieties :: MultirationalMap ^** MultiprojectiveVariety

MultirationalMap ^** MultiprojectiveVariety -- inverse image via a multi-rational map

Synopsis

Description

i1 : ZZ/300007[x_0..x_3], f = rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2}, g = rationalMap {x_1^2-x_0*x_2, x_0*x_3, x_1*x_3, x_2*x_3, x_3^2};
i2 : Phi = last graph rationalMap {f,g};

o2 : MultirationalMap (rational map from threefold in PP^3 x PP^2 x PP^4 to PP^2 x PP^4)
i3 : Y = projectiveVariety ideal(random({1,1},ring target Phi), random({1,1},ring target Phi));

o3 : ProjectiveVariety, 4-dimensional subvariety of PP^2 x PP^4
i4 : time X = Phi^* Y;
     -- used 5.56833 seconds

o4 : ProjectiveVariety, curve in PP^3 x PP^2 x PP^4
i5 : dim X, degree X, degrees X

o5 = (1, 31, {({0, 8, 0}, 1), ({1, 1, 0}, 2), ({3, 1, 0}, 1), ({1, 0, 1}, 7),
     ------------------------------------------------------------------------
     ({1, 0, 2}, 4), ({3, 0, 1}, 2), ({1, 4, 0}, 1), ({0, 1, 1}, 4), ({2, 1,
     ------------------------------------------------------------------------
     0}, 2), ({0, 0, 2}, 1), ({0, 0, 3}, 4), ({2, 0, 1}, 2), ({1, 2, 0}, 1),
     ------------------------------------------------------------------------
     ({4, 0, 0}, 4), ({0, 4, 1}, 1)})

o5 : Sequence

See also