Compute the codimension of the homogeneous monomial algebra K[B].
As the result is independent of K it is possible to specify just B.
i1 : B={{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, 3, 1}} o1 = {{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, ------------------------------------------------------------------------ 3, 1}} o1 : List |
i2 : codimMA B o2 = 4 |
i3 : B={{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, 3, 1}} o3 = {{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, ------------------------------------------------------------------------ 3, 1}} o3 : List |
i4 : M=monomialAlgebra B ZZ o4 = ---[x ..x ] 101 0 6 o4 : MonomialAlgebra generated by {{2, 2, 1}, {1, 1, 3}, {1, 2, 2}, {2, 0, 3}, {1, 4, 0}, {2, 3, 0}, {1, 3, 1}} |
i5 : codimMA M o5 = 4 |
The object codimMA is a method function.