next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Macaulay2Doc :: hilbertSeries(Module)

hilbertSeries(Module) -- compute the Hilbert series of the module

Synopsis

Description

We compute the Hilbert series of a module.
i1 : R = ZZ/101[x, Degrees => {2}];
i2 : M = module ideal x^2

o2 = image | x2 |

                             1
o2 : R-module, submodule of R
i3 : s = hilbertSeries M

         4
        T
o3 = --------
           2
     (1 - T )

o3 : Expression of class Divide
i4 : numerator s

      4
o4 = T

o4 : ZZ[T]
i5 : poincare M

      4
o5 = T

o5 : ZZ[T]
Recall that the variables of the power series are the variables of the degrees ring.
i6 : R=ZZ/101[x, Degrees => {{1,1}}];
i7 : M = module ideal x^2;
i8 : s = hilbertSeries M

         2 2
        T T
         0 1
o8 = ----------
     (1 - T T )
           0 1

o8 : Expression of class Divide
i9 : numerator s

      2 2
o9 = T T
      0 1

o9 : ZZ[T ..T ]
         0   1
i10 : poincare M

       2 2
o10 = T T
       0 1

o10 : ZZ[T ..T ]
          0   1