next | previous | forward | backward | up | top | index | toc | Macaulay2 website
Macaulay2Doc > basic commutative algebra > M2SingularBook > Singular Book 1.3.13

Singular Book 1.3.13 -- computation in quotient rings

In Macaulay2, we define a quotient ring using the usual mathematical notation.
i1 : R = ZZ/32003[x,y,z];
i2 : Q = R/(x^2+y^2-z^5, z-x-y^2)

o2 = Q

o2 : QuotientRing
i3 : f = z^2+y^2

      2
o3 = z  - x + z

o3 : Q
i4 : g = z^2+2*x-2*z-3*z^5+3*x^2+6*y^2

      2
o4 = z  - x + z

o4 : Q
i5 : f == g

o5 = true
Testing for zerodivisors in Macaulay2:
i6 : ann f

o6 = ideal ()

o6 : Ideal of Q
This is the zero ideal, meaning that $f$ is not a zero divisor in the ring $Q$.