RingElement / RingElement -- fraction

Synopsis

• Operator: /
• Usage:
f/g
• Inputs:
• f,
• g,
• Outputs:
• , the fraction f/g

Description

If either f or g is in a base ring of the other, then that one is promoted so that both are elements in the same ring R.

The fraction will be an element of the fraction field, frac R, of R. If R is already a field, then this means that the fraction will be an element of R.

 i1 : 4/2 o1 = 2 o1 : QQ
 i2 : R = GF(9,Variable=>a); i3 : (a/a^3) * a^2 == 1 o3 = true
 i4 : S = ZZ[a,b] o4 = S o4 : PolynomialRing i5 : (a^6-b^6)/(a^9-b^9) 3 3 a + b o5 = -------------- 6 3 3 6 a + a b + b o5 : frac S
If the ring contains zero divisors, the fraction field is not defined. Macaulay2 will not inform you of this right away. However, if computation finds a zero-divisor, an error message is generated.
 i6 : A = ZZ/101[a,b]/(a*b) o6 = A o6 : QuotientRing i7 : (a+b)/(a-b) -b o7 = -- b o7 : frac A
At this point, if one types a/b, then Macaulay2 would give an error saying that a zero divisor was found in the denominator.