next | previous | forward | backward | up | top | index | toc | Macaulay2 website
LinearTruncations :: LinearTruncations

LinearTruncations -- truncations of a multigraded module that give linear resolutions

Description

Let $k$ be a field, $S$ a $\ZZ^r$-graded polynomial ring over $k$, and $M$ a finitely generated, $\ZZ^r$-graded $S$-module. Write $M_{\geq d}$ for the truncation $\oplus_{d'\geq d} M_d'$ of $M$ at $d$ (where $d'\geq d$ if $d'_i\geq d_i$ for all $i$). The main purpose of this package is to find the degrees $d\in\ZZ^r$ so that $M_{\geq d}$ has a linear resolution, i.e. satisfies the function isLinearComplex. No sufficient finite search space is known, so the result may not be complete.

i1 : S = ZZ/101[x_1..x_4,Degrees=>{{1,0},{1,0},{0,1},{0,1}}]

o1 = S

o1 : PolynomialRing
i2 : I = ideal(x_1^3*x_3, x_2*x_3*x_4, x_3^4*x_4, x_4*x_2^2, x_1^3*x_2^3, x_3^3)

             3             4     2     3 3   3
o2 = ideal (x x , x x x , x x , x x , x x , x )
             1 3   2 3 4   3 4   2 4   1 2   3

o2 : Ideal of S
i3 : M = S^1/I

o3 = cokernel | x_1^3x_3 x_2x_3x_4 x_3^4x_4 x_2^2x_4 x_1^3x_2^3 x_3^3 |

                            1
o3 : S-module, quotient of S
i4 : regularity M

o4 = 5
i5 : r = coarseMultigradedRegularity M

o5 = {6, 4}

o5 : List
i6 : L = linearTruncations({{0,0}, r}, M)

o6 = {{2, 3}, {3, 2}}

o6 : List
i7 : apply(L, i -> isLinearComplex res truncate(i,M))

o7 = {true, true}

o7 : List

If $M_{\geq d}$ has a linear truncation then $M_{\geq d'}$ has a linear truncation for all $d'\geq d$, so the function linearTruncations gives the minimal such multidegrees in a given range, using the function findRegion. The functions linearTruncationsBound and regularityBound estimate the linear truncation region and the multigraded regularity region of $M$, respectively, without calculating cohomology or truncations.

Caveat

If the ring $S$ is standard $\ZZ$-graded then $M_{\geq d}$ has a linear resolution if and only if $d\geq\operatorname{reg} M$, where $\operatorname{reg} M$ is the Castelnuovo-Mumford regularity of $M$.

See also

Authors

Version

This documentation describes version 1.0 of LinearTruncations.

Source code

The source code from which this documentation is derived is in the file LinearTruncations.m2.

Exports

  • Functions and commands
    • "compMax" -- see compMin -- takes componentwise minimum or maximum of a list of lists
    • compMin -- takes componentwise minimum or maximum of a list of lists
    • diagonalMultidegrees -- t-tuples of non-negative integers with sum equal to d
    • findMins -- calculates the minimal elements of a subset of ZZ^r
    • findRegion -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
    • irrelevantIdeal -- gives the irrelevant ideal of the coordinate ring of a product of projective spaces
    • isLinearComplex -- tests whether a complex of graded modules is linear
    • isQuasiLinear -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
    • linearTruncations -- finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
    • linearTruncationsBound -- bounds the region where truncations of a module have linear resolutions
    • multigradedPolynomialRing -- produces polynomial rings with standard multigradings
    • partialRegularities -- calculates Castelnuovo-Mumford regularity in each component of a multigrading
    • regularityBound -- bounds the multigraded regularity of a module
    • supportOfTor -- computes multidegrees in the support of Tor_i(M,k), where k is the residue field
  • Methods
    • "compMax(List)" -- see compMin -- takes componentwise minimum or maximum of a list of lists
    • "compMax(List,List)" -- see compMin -- takes componentwise minimum or maximum of a list of lists
    • "compMin(List)" -- see compMin -- takes componentwise minimum or maximum of a list of lists
    • "compMin(List,List)" -- see compMin -- takes componentwise minimum or maximum of a list of lists
    • "diagonalMultidegrees(ZZ,List)" -- see diagonalMultidegrees -- t-tuples of non-negative integers with sum equal to d
    • "diagonalMultidegrees(ZZ,ZZ)" -- see diagonalMultidegrees -- t-tuples of non-negative integers with sum equal to d
    • "findMins(Ideal)" -- see findMins -- calculates the minimal elements of a subset of ZZ^r
    • "findMins(List)" -- see findMins -- calculates the minimal elements of a subset of ZZ^r
    • "findRegion(List,Ideal,Function)" -- see findRegion -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
    • "findRegion(List,Module,Function)" -- see findRegion -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
    • "irrelevantIdeal(Ring)" -- see irrelevantIdeal -- gives the irrelevant ideal of the coordinate ring of a product of projective spaces
    • "isLinearComplex(ChainComplex)" -- see isLinearComplex -- tests whether a complex of graded modules is linear
    • "isQuasiLinear(BettiTally)" -- see isQuasiLinear -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
    • "isQuasiLinear(ChainComplex)" -- see isQuasiLinear -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
    • "isQuasiLinear(List,Module)" -- see isQuasiLinear -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
    • "linearTruncations(List,Module)" -- see linearTruncations -- finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
    • "linearTruncations(Module)" -- see linearTruncations -- finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
    • "linearTruncationsBound(Module)" -- see linearTruncationsBound -- bounds the region where truncations of a module have linear resolutions
    • "multigradedPolynomialRing(List)" -- see multigradedPolynomialRing -- produces polynomial rings with standard multigradings
    • "multigradedPolynomialRing(ZZ)" -- see multigradedPolynomialRing -- produces polynomial rings with standard multigradings
    • "partialRegularities(ChainComplex)" -- see partialRegularities -- calculates Castelnuovo-Mumford regularity in each component of a multigrading
    • "partialRegularities(Module)" -- see partialRegularities -- calculates Castelnuovo-Mumford regularity in each component of a multigrading
    • "regularityBound(Module)" -- see regularityBound -- bounds the multigraded regularity of a module
    • "supportOfTor(ChainComplex)" -- see supportOfTor -- computes multidegrees in the support of Tor_i(M,k), where k is the residue field
    • "supportOfTor(Module)" -- see supportOfTor -- computes multidegrees in the support of Tor_i(M,k), where k is the residue field
  • Symbols
    • "Inner" -- see findRegion -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
    • "Outer" -- see findRegion -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
    • "IrrelevantIdeal" -- see isQuasiLinear -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal

For the programmer

The object LinearTruncations is a package.

Menu