next | previous | forward | backward | up | top | index | toc | Macaulay2 website
GradedLieAlgebras :: holonomy(...,Field=>...)

holonomy(...,Field=>...) -- optional argument for holonomy

Synopsis

Description

This is an option for holonomy to define the coefficient field, which is QQ by default. You may use any "exact" field (not the real numbers or the complex numbers), such as a prime field or an algebraic extension, e.g., toField(ZZ/7[x]/ideal\{x^2+1\}) or a fraction field, e.g., frac(QQ[x]). Observe that it is necessary to use the function toField when $F$ is defined as an algebraic extension of a prime field.

i1 : F = toField(ZZ/7[x]/ideal{x^2+1})

o1 = F

o1 : PolynomialRing
i2 : L = holonomy({{a,d}},{{a,b,c}},Field=>F)

o2 = L

o2 : LieAlgebra
i3 : (3*x+2) a b + (2*x+3) b a

o3 = (-x+1)(c b)

o3 : L

Further information

See also

Functions with optional argument named Field :