If a GKM variety $X$ also admits a structure of a NormalToricVariety, then the following example shows how to obtain the KClass of any ToricDivisor on $X$.
i1 : X = toricProjectiveSpace 3; |
i2 : D = toricDivisor({1,0,0,0},X) -- the class of O(1) on P^3 o2 = X 0 o2 : ToricDivisor on X |
i3 : Y = makeGKMVariety X; -- The torus is C^3 not C^4 |
i4 : C = makeKClass(Y,D) o4 = an equivariant K-class on a GKM variety o4 : KClass |
i5 : assert(isWellDefined C) |
i6 : peek C o6 = KClass{variety => a GKM variety with an action of a 3-dimensional torus} -1 KPolynomials => HashTable{{0, 1, 2} => T } 2 -1 {0, 1, 3} => T 1 -1 {0, 2, 3} => T 0 {1, 2, 3} => 1 |
Toric vector bundles are yet to be imported.