next | previous | forward | backward | up | top | index | toc | Macaulay2 website
FormalGroupLaws :: formalGroupPoint(FormalGroupLaw,FormalSeries)

formalGroupPoint(FormalGroupLaw,FormalSeries) -- constructing a formal group point

Synopsis

Description

This constructs an object of the class FormalGroupPoint out of a FormalGroupLaw and a FormalSeries with the same coefficient ring and such that s has precision at most that of f.

i1 : ZZ[x,y]

o1 = ZZ[x..y]

o1 : PolynomialRing
i2 : f=FGL(series(x+y+x*y,2))

o2 = FormalGroupLaw{x*y + x + y, 2}

o2 : FormalGroupLaw
i3 : ZZ[u,v]

o3 = ZZ[u..v]

o3 : PolynomialRing
i4 : s = series(u+v+u^2,2)

                   2
o4 = FormalSeries{u  + u + v, 2}

o4 : FormalSeries
i5 : p= formalGroupPoint(f,s)

                                                                    2
o5 = FormalGroupPoint{FormalGroupLaw{x*y + x + y, 2}, FormalSeries{u  + u + v, 2}}

o5 : FormalGroupPoint